
Page 166 of 204

useRef

Refs are something we already had in the previous versions of React, and the

most common use case for them is to be able to access a DOM element and

perform imperative actions on it, jQuery style.

This hook allows us to get values from a speci�c HTML element like its width,

or even trigger actions in the HTML element. By using this, we can get access to

the full DOM API as an escape hatch if we need to change the DOM without

React intervening.

Let's import it and attach it somewhere so we can see how it works:

import React, { useRef, useEffect } from "react";

export default function App() {

 const button = useRef(null);

 useEffect(() => {

 console.log(button.current);

 }, []);

 return <button ref={button}>A button</button>;

}

You may be wondering why I console.log the current out of the button.

That is because of the way React stores this. It always stores the last value of the

ref in the current key of the ref object.

Your console should now have the HTML element as you would by using:

Page 167 of 204

$("button");

And like you could in jQuery, we can click the button like so:

import React, { useRef, useEffect } from "react";

export default function App() {

 const button = useRef(null);

 useEffect(() => {

 button.current.click();

 }, []);

 return (

 <button ref={button} onClick={() => alert("I have been

clicked")}>

 A button

 </button>

);

}

Like in the good ol' days, you will see an alert as soon the page is loaded.

In my last example, the button was clicked programmatically using the ref we

placed on it.

We can take this even further by having two buttons and using refs . We can

click on one button, which triggers a click on the other button.

Let's see this in code:

Page 168 of 204

import React, { useRef, useState } from "react";

import "./styles.css";

export default function App() {

 const [count, setCount] = useState(0);

 const button = useRef(null);

 const fakeClick = () => {

 button.current.click();

 };

 return (

 <>

 <button onClick={fakeClick}>

 This button triggers a click somewhere else

 </button>

 Count: {count}

 <button ref={button} onClick={() => setCount(count +

1)}>

 +

 </button>

 </>

);

}

If you click on the �rst button, you can see that it acts as if the increment button

was clicked, and it will increase the counter.

You can also do some handy things with useRef like redirect user focus to where

you want it to be, or get the dimensions of an element.

Page 169 of 204

The idea of React is that it will handle DOM updates and manipulation for you,

so please consider that when using useRef and use it with caution.

Link to CodeSandbox

As a �nal for hooks, let's also look at an interesting part about useRef : the fact

that it's a mutable value that can hold anything in it's current property.

This idea may seem a bit confusing so let's test some code:

export default function App() {

 const count = useRef(0);

 const [countState, setCountState] = useState(0);

 useEffect(() => {

 count.current = 1;

 console.log("Ref " + count.current);

 }, []);

 useEffect(() => {

 setCountState(1);

 console.log("State " + countState);

 }, []);

 return <h1>Hello</h1>;

}

You can see we have two e�ects, one sets the value of count.current by

accessing and mutating its value, and the next one uses useState to change

that same value.

Both of these do a console.log after the value has been changed.

https://codesandbox.io/s/useref-example-k2pm8

Page 170 of 204

If we look at the console, we can see the following:

Ref 1

State 0

Interesting ah? :ponders-in-british:

The reason for that is that when you set setState in a react component, you

trigger that component to run again with the new values it has, in this case,

with the new state of 1 . So the console.log we have there doesn't actually

get the new value since the e�ect doesn't run when that value changes. In the

case of a ref , it's a mutable value, so it means that when you run, the value

will be automagically updated with no re-render necessary, and that's why we

can see Ref 1 in the console.

You may be wondering what happens when we pass the stateCount as a

dependency like so:

export default function App() {

 const count = useRef(0);

 const [countState, setCountState] = useState(0);

 useEffect(() => {

 count.current = 1;

 console.log("Ref " + count.current);

 }, []);

 useEffect(() => {

 setCountState(1);

 console.log("State " + countState);

 }, [countState]);

Page 171 of 204

 return <>Hello</>;

}

In this case, we can see that what happens is that the component renders the

same in the �rst run, but then since we have the dependency of the

countState , the component re-renders, and only now can we see the new

value.

I hope this makes sense and helps you understand a bit of the magic of useRef .

useMemo

We are almost at the end of the hooks. We can do this.

We are now approaching the memoization hooks, I know that it's a very long

word, it also took me some digging to �gure it out because I had never heard

this word before even though I had used the technique.

I think the best way to try and understand what memoization is to make a

small function to create the same e�ect.

We have this function:

const multiplyNumberBy10 = (number) => {

 const value = number * 10;

 console.log(value);

};

Link to CodeSandbox

https://codesandbox.io/s/mutable-ref-example-x125r

